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Abstract

~

This investigation considers the thermo-mechanical effects of an
asperity traversing at a high speed over a semi-infinite medium with a
thin hard coating surface. The general analytical solutions of the
mechanical stress state, the temperature field and the thermal stress
state are obtained and expressed in Fourier transform space. The
asperity speed is sufficiently high such that the thermal stress is
much larger than that caused by the mechanical traction of asperity
pressure and friction. The analysis emphasizes the heating effect of

the fiiction force, which leads to the initiation of the thermo-

—~ 3

mechanical cracking, or "heat-checking” in the surface layer, the

substrate or their interface. For hard coatlng layers, the initiation

a ,' L4

of a crack will occur at a depth ”ﬁax (where the maximum principal
thermal stresses occur). The depthrls found to be controlled e e,
T, TN S R R
principally by the Peclet number.- Ig lsifound that for a thick
coating layer, the crack will occur inside the surface layer where the
stress state is little affected by the substrate, for which the
estimate of fracture initiation is the same as that of a single
material of the coating. Yet, for modified surfaces of thin coating
layer in which the thickness is of the same order of the " max’ the
interaction between the surface layer and the substrate, through their

differences in mechanical and thermal properties, greatly influences

the combined stress state near the interface, and thus the crack

initiation in the neighborhood of Mnax” The investigation employs the
Fourier transform technique for the analytical method in order to

facilitate the parametric study. The complex Fourier transform

ii




¥ - T T O ———— ——————

inversion could be done, within the strip of analyticity, alor 4
carefully selected path. The speed of numerical integratior can be
optimized with the proper choice of the offset, c, from the real axis,

A which is the theoretical path of integration for Fourier inverse

i, tranform.
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Nomenclature

Asperity characteristic dimension, the half width of the
contact area

c Specific heat

CI,CT The dilatational wave speed of the surface layer and the
substrate, respectively

C2,C§ The shear wave speed of the surface layer and the substrate,
respectively

H Thickness of the surface layer

k Thermal conductivity

M Mach number

P(x,;) Load distribution over the contact area

P, Average pressure over the contact area

q(x,) Heat flux distribution through the contact area

do Average heat flux through the contact area

R'RI’RII Peclet numbers of the single material, surface layer and

the substrate, respectively

Ri Traction over the contact area in the xj direction
T Tenperature field
u;,u, Displacement in %] and xp direction, respectively
u,v Dimensionless displacement in x] and x) direction, respectively
v Traverse speed of asperity (xy direction)
{xi} Convective coordinates fixed to the moving asperity
{x;} Material coordinates fixed to the medium
a Coefficient of thermal expansion
8 The material region: I for the coating surface; II for the
substrate
¢ Dimensionless temperature field (=(T-T,)k/qqa)
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qﬁ Chapter 1

Introduction and Literature Survey

Y
=
t
R
Sﬁﬁ 1.1 Problem of Thermo-mechanical Cracking in Layered Medium
e
LHNEY
gt
?« The present investigation studies the asperity and the material
%
B
:3h< parameters which influence the thermo-mechanical cracking in a medium
&
DL
with a surface coating layer. The general failure mechanism is caused
ANy s s . . .
e by the frictional excitation of a high speed asperity traversing over a
e
B N 3 1
ﬁ%: coated surface. Maximum tensile stress is considered the principal
AT
4t
| cause of mode I cracking in the hard wear material. Maximum shearing
Ay
R . .
;'g stress especially in the coating/substrate interface may very well lead
P =y
a. to delamination failure of the coating layer. The understanding of
LY Ko -
Ly
such a failure process shall improve the design of these devices by
o alleviating the problem of friction cracking.
P
i
&Y
) When two bodies in high speed contact under heavy loads slide
S
}:ﬁ relative to each other, the nominal design pressure between the mating
¥ \,
)
&g{ surfaces is based upon the nominal design contact area. However, at
N

high operating speed, the actual contact area can be reduced by several

orders of magnitude. As a result, a low design pressure may result in

o

~ a very high interfacial pressure in the actual contact zone. Local
Wy

high temperature may occur due to excessive frictional heating in the

Al
%t N vicinity of the contact regions. Cracking may then happen caused by
L
‘-t'S“
R the combined thermal heating and mechanical load leading toward wear
,. ‘
— and functional failure of the device. This phenomenon is the so-called
R Ll

s
0
A L]
; .
.J . y
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b&: "heat checking" or "thermocracking" [1]. Both the reduction . the
!JQ?
A . .
q:: performance life and the wasted energy are of concern to mecnanical

designers. For improvement of the wear property of the surface, recent
effort has been directed toward surface modification. Research in

2 behavior of coated surface under asperity excitation, hence, has gained

importance recently.

eh A general survey of the problem of cracking through the development
of a frictional hot spot was discussed by Burton [2]. A series of

experiments carried out by Sibley and Allen [3] showed photographic

ﬁﬁ: evidence of symmetrically moving hot patches in the contact zone.

ifﬁ Surface displacements and temperature field of a convective elastic
;f* half space under an arbitrarily distributed fast-moving line heat

ng source were obtained, using integral transform techniques, by Ling and
‘.‘ Mow [4]. The problem of thermal stresses, Mow and Cheng [5]), and

"Wyt

3;: ’ temperature distribution, Ling and Yang [6], were examined. Two

§§; dimensional models of heat checking in the contact zone of a face seal
;} were presented by Ju and Huang [7]. Two dimensional models in the

R

§ ’ contact zone of a thick layered medium were presented by Ju and Chen
e

- -
- -

o)
v
.

(8]. In their two-dimensional analysis of a layered medium, it was

-

shown that the material parameters affect strongly the stress state

aiw that would cause thermo-mechanical cracking. The effects of thin

"

‘ s .

%y coating were shown, but a parametric study of a thinner surface layer

was not considered.
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1.2 Parametric Effects

The present work deals with a general class of problems for thermo-
mechanical cracking that is caused by a moving asperity traversing at a
high speed over a semi-infinite medium with a thin surface coated
layer. Such a thin surface layer is commonly designed for surface
modification to improve the wear property of the substrate, such as a
composite, which is generally of poor resistance to friction wear. The
frictional excitation of the asperity imparts a mechanical load as well
as a thermal load. Through frictional heating onto the surface
boundary of the coated layer, the high speed traversing heat source
behaves like a thermal shock. It is the combined thermo-mechanical
stress state that leads to the initiation of cracks in the surface
layer, the substrate or their interface. The stress states depend upon
the asperity characteristics, the coating layer thickness, and the
material properties of both the coating layer and the substrate. The
analysis of the thermo-mechanical field in a layered medium involves
the matching of the mechanical and the thermal properties of both the
surface layer and the substrate. The asperity characteristics also
play an important role. The individual influences can be protracted
from works on the parametric analysis of high speed asperity excitation
over a single material by Ju and Huang [9,10,11,12], which was a fully
three-dimensional model. The parameters, as inferred from the

mathematical model, are tabulated as follows:
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TABLE I

Asperity Parameters

Asperity traversing speed

Asperity pressure

Asperity contact area width
TABLE II

Material Parameters

(A,u) or (E,v) Mechanical constitutive coefficients

1
P Mass density
BE Coefficient of Coulomb friction
a Coefficient of thermal expansion
3 Thermal diffusivity
k Thermal conductivity

This paper will expound their effects on the stress states and on

the locations of the maximum stress.

1.3 General Theory

At high speed traversing, the high temperature and surface yield
due to the excitation are subgranular. The plastic wear and surface
shear for hard wear material are demonstrated experimentally to be

-§ restricted to a very thin surface layer (Blau [14], and Ruff and Blau
\ [15]). 1If the critical point of initiation of thermo-mechanical
;;} cracking is at a point of depth by an order of magnitude larger than

plastic depth, the base solid material subjected to the asperity
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friction is essentially elastic. Furthermore, for the presen- :urpose,
the material is homogeneous and isotropic without local fla''s. The
basic mathematical formulas of thermoelasticity describing the behavior

of continuous media are the following:
uViy + (Mp)grad div g = (3A+2p)a grad T + py, (1.1)
xV2T = peT, (1.2)

where u and T are the displacement and temperature, (X,u) are the
Lame’s elastic coefficients, p is the mass density, a is the
coefficient of thermal expansion, x is the thermal diffusivity, and a
dot over a variable denotes a time derivative. The justification of
the use of the uncoupled form of the Fourier equation is referred to
Boley and Wiener [16]. The effect of the dynamic term may result from
either a dynamic loading state or a thermal shock in which the rise
time of temperature is of the order.of time of passage of the stress
waves in the material. Duhamel [l17] stated that the dynamic term can
be disregarded if the time rate of change of temperature is slow
enough. Parkus [18] showed that the significant effect from the
dynamic term can arise only when there is an instantaneous change in
the surface temperature or in the temperature of the surrounding
medium. In fact, the dynamic effect is greatly reduced if the
tempeFature change occurs in a very short, but finite, interval of
time. This was confirmed by Danilovskaya {19-20], who studied in

detail the dynamic effect due to a thermal shock on the surface of a

half-space and demonstrated that the maximum dynamic stress is reduced




to 86 percent even for the extremely short duration heating of 5-12
seconds. The small effect of the dynamic term, in Equation .1.1), will

be neglected and wind up a set of quasi-static uncoupled equations.

"

The quasi-static equations readily allow us to apply the method of

=
"

D

-

integral transforms.
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Chapter 2
Problem Statement and Solution Technique

Under consideration is the problem of thermo-mechanical cracking in
a coated medium caused by a fast moving asperity whose effect is
separated into a moving heat source and a moving mechanical load of
combined pressure and tangential friction force. The size of the
asperities are of the order of 1 mm; the total thickness of the medium
including both the hard wear coating layer and the substrate is at least
an order of magnitude larger. Mathematically, the material is
represented by a half space with the asperity traversing over the

surface boundary at a uniform speed (V) as shown in Figure 1.

2.1 Basic Equations

Two sets of coordinates are considered: xj’-x7’ e fixed to the
medium (the material reference frame), x1-x9 are fixed tr oving
load ( the convective reference frame). The governing dif: -ial
equations are tﬁe thermo-elastic Navier’s equation and the uncouplecu
Fourier equation, respectively, expressed in the material coordinates,
uf

- y ﬁ
p+pﬁ)3ij A+ #ﬂajjug pﬁug + (3Aﬁ+2pﬁ)a a.18, (2.1)

"y aiirﬂ - T8, (2.2)

where d; = 3/3x4, the indices in the subscripts i,j,k have the range
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x,—x, are fixed to the moving load

1

x;-x' are fixed to the medium

asperity

coated layer
M t,}’( xi)

inte rface 7

?(xt)

substrate

Figureli. Two Dimension Asperity




‘9? 1,2; the summation convention is used for all repeated indicez .:
ey Roman minuscules, B denotes the layered region: I for the ccaiting
surface, Il for the substrate. The stress field {aij} is related to

\ the displacement field {uj} through the thermo-elastic Hookian law:

+ ¥ - - ﬂ
’ 1 Y akuﬁsij + ug(3; ud + 8, uﬂ) (3rg+2up)a,mhs (2.3)
e
iss where 5ij is the Kronecker delta. The field variables, {uj} and T,
!".Q
L]
» as found in Equations (2.1) and (2.2), depend on xj and t. The
"; configuration shown is Figure 1 changes as time varies. Therefore,
t
i;i time is an explicit variable, and the problem is transient. However,
o
S by taking into consideration the uniform properties of the materials,
,Rﬁ asperity motions and loadings, if the coordinates are fixed to the
"
ﬁ asperity the configuration remains invariant to time. We thus justify
iy
i the invariant states of field variables. In other word, with respect
.\“
&'ﬁ to a convective reference frame, the analytical formulation becomes
f
L
f\ﬁ "steady-state”; that is, there is no explicit time variable. The
)
L)
(L
| analvtical complexity may be alleviated with the use of the convective
¢
5%& coordinates (x1-x2). Equations (2.1) and (2.2) become
N
b
l“.
tt B - - 2(1- B
) 8398 + (1 2uﬁ)aiju€ 9 M2 (1 zuﬂ)a“ufi’ + 2(L+w g)ags, TP, (2.4)
R
IR
by
) k,3,..T = va, 18, (2.5)
O B3]
] 1/2 .
«UQ where Vﬁ is the Poisson’s ratio, M = [VszI/uII] is the Mach number
1'
L]
[} : 7 - .3 -
;2¢ of shear in region II, and Jﬂ pIIpﬁ/pﬁpII, i.e. SI “IIpI/“IpII’
i)

_ : and 311 = 1, Time is no longer an explicit variable. The boundary
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conditions are:

on the surface, x93 = 0

azi - -®; (2.6)
kIazTI - -V, (2.7)

where ki is the thermal conductivity in the surface layer, Ry =
pf?(xl) and R, = P(x,) in the contact region and zero elsewhere. The
convective heat loss at the free surface, being of small order, is

neglected without loss of generality. Regular conditions hold at
infinity; that is, at infinity

ai? -0, T =0 (2.8)

The mechanical and the thermal fields must also satisfy the

continuity conditions at the layer/substrate interface, x9 = H

I _,,II I . 1L
u; =ugs 02J aZj’ (2.9)
Tl = 1II | kIazTI - kIIaZTII. (2.10)

It is noticed that the governing differential Equation (2.4), and

the boundary conditions (2.6) and (2.7), are both non-homogeneous. By

separating the fields into two parts, such that

(2.11)

{ aiﬁ , ug } = ai? , u? }T + £ ai? , ug }M’

10

e Ba M ELM RN




3 where the subscripts T and M represent thermal and mechanic:_,
.
B
R respectively. The first set shall satisfy the non-homogeneous
:kﬁ : differential equations with the homogeneous boundary conditions; while
)
;ia the second set shall satisfy the homogeneous differential equations but
‘i‘.’l
W
A with the non-homogeneous boundary conditions. Essentially the
-
séf solutions are delineated into one resulting from the temperature field
fin!
£§ and another from the mechanical traction. They are, respectively, the
R

' thermal stress field and the mechanical stress field. Nevertheles:,
as‘ for single material (equations and solutions see Appendix A), the
)
%,; thermal stress (aff) for various speed and mechanical stress (afﬁ) are
e
'”@ shown, in Figure 2, that if the asperity speed is larger than 0.127
’$2 ms -1 (5 in/sec), the thermal stress dominates the failure, and the
oo
e
'*1: mechanical stress becomes less important. Therefore, for the case of
'
N "hot spot", because the asperity traversing speed is much higher (more
1%
shg than 5 ms'l) than the indicated limit speed (0.127 ms'l), the study in
e
s the sequel will focus essentially upon the thermal stress.
..".c

)
\.! s
Syl 2.2 Governing Equation
hy
3

‘
)
iR

: By using the “ollowing dimensionless variables:
IR I
3
)
i': §€ = x,/a, n = x,/a, D=H/a, u=u;/a, v =u,/a,
e
R /P /P /P

Y g.. =0 , 0. = a , 0 =0 ,
ﬁ“i £2 11/ % £n 21/ %0 nn 22/%0
", o
by
g 172 172 c* 1/2

’ - - / - - +
L)
\.\

11

‘we,
A Nl R CCTR I
"‘ by ui'.ul' mﬁ'&f\‘{gﬁu{&qﬂ.i {a&hﬂ_{h.& 3 e
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0
A
a
) * 172 ¢ 3N, _+2 /2, p* I +2p oo 11/2
f‘" C2 - (AI/pI) ’ - [( II+ #II)/pII] ’ - [( I+ /J'I,’I] 1
Beh
'S ¥, qoaaI/kI, T qoaaII/kII, I Ci/Cy, J C,/C,, & pI/pII’
1 o)
=
™,
M=vV/C, N=2¢C/C,, P=%P/P,, Q=q/qq, RI -Va/nI, RII -Va/nII,
o
.
[N 68 = (TA-Tg)k;/qom-
.%ﬁ.
k2
§;m Equation (2.4) becomes:
-,-,‘
‘!:":
e 2 248 2 B 2
s aauﬂ_,.(a_b)av b, 008 8B 2 80 10
‘. B 3¢ B" "B’ 3¢an B an? B 3¢ B "ae?
by
i o a2vh o . 82uf 328 088 4 2 0P 1oy
b~ a,. a . C T . , .12-
2 Baez T s-"8) acon B an? B an A 2 )
f;‘ - 2 .z .2 2 2 AP
8o (aﬁ,bﬁ,cﬂ,i‘iﬂ] (1%,3%, (6™ %y, /C3,1/3%), for g = 1;
‘I' N 7 2 2 2
'| [aﬁ,bﬂ,cﬁ,5ﬂ) - (N ,1,b 11/02,1], for g = II,
iy 1N
where M is the Mach number in the substrate, and equal to V/Cy, Coy
vy
“EJ is the shear wave speed, and V is the traversing speed (or the asperity
T,
’z: speed), which is, without loss of generality, of the order of 15 ms- L.
h
%)
. M31/2 denotes, therefore, the Mach number in the surface layer, which
N
:f for hard wear material, such as Stellite III, is of the order of 10-3,
,:j Since the magnitude of $M2 is of small order to aﬂ and bﬂ’ the dynamic
]
ol
terms on the right side of equal sign in (2-12-a) and (2-12-b) are
r;g negligible comparing to the first terms of both equations
o
‘i'* Equation (2-12) thus is simplified to the quasi-static form:
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aﬂ-§§§f + (2g-2p) iéZf + B g;:ﬂ - % §Zﬂ ’ S
b Zzzﬂ + (35-bg) z:;ﬁ + 3 j::ﬂ - o Zjﬁ . (2.13-b)
The Hookian law, Equation (2.3), is thus
asg - gz dﬂ[ aﬁ—ggf + (aﬂ+bﬁ)—g%f . cﬁ¢ﬂ], (2.14-2)
a€5 - gz dﬁbﬂ[ zzﬁ + Z:ﬂ ], (2.14-b)
anf - —%f— dﬂ[ (a+bs —%Eé + aﬁ—ggf ; cﬁ¢ﬁ]. (2.14-¢)

where dﬂ-pl/pﬁ' that 1is, dI =1 dII = §. The boundary conditions are:

asg - 4P(§) atn =0, -1<§s1, (2.15-a)
f -P(&) -l=sée <1 n =0

T = , (2.15-b)
nn 0 clz2€and €21 n=20

a%%, 0%5, 053 + 0 as £24792 > =, (2.16)

I . ,II I . ,1II t =D 17-
Pen T %%n> Tqn T Tpp T ’ (2 3)
vl = uII, vl = I at n = D. (2.17-b)

The Fourier equation, Equation (2.5) is expressed in the

dimensionless form as:




0 »
3
R 5248 3248 LY
i R L (2.18)
N a¢? dn? B 8¢
W,
R
L0 . . .
s In the next section, the solution of these sets of equations,
;ég Equations (2.13), (2.14), (2.18) will be obtained, using the Fourier
L
_‘ transform method.

2.3 Integral Transform Technique and General Solution

In this section, we will develop in the Fourier transform space the

general solutions for the quantities {uﬂ, vﬂ, o B, o g, ang}

£’ ¢
e 2.3.1 Fourier Transform
In view of the boundary conditions and the problem itself, by the

results in [21], the appropriate representation of the solutions may be

obtained by the Fourier transform defined by the following equations:

é(s,n) = j+ g(&,n)exp(éisg)dE (2.19-a)

B, 1 o+ ic -
5\5 g(&,n) = ow f+ g(s,n)exp(-isf)ds (2.19-b)
the -+ iC

?C‘ where s is the complex transform parameter, and g(s,n) denotes the

e Fourier transform of g(£,n). Equation (2.28) forms the Fourier

transform pair.

2.3.2 Mechanical Stress Field
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With reference to Equations (2.11l), (2.13), and (2.14), - :

equations to be used for the mechanical portion of the soluzions are

the following:

aﬁ_g;;f + (35-bg) Z;;i + B z::ﬂ -0, (2.20-2)
b z;zﬁ . (aﬂ‘bﬁ)“%;§§’ N aﬂ_%;;f -0 (2.20-b)
och - gz dﬁ[ aﬂ—ggf + (aﬁ+bﬂ)—g\;’E ] (2.20-c)

a€5 - ;: dﬁbﬂ[ —ggf + —gsf ] (2.20-d)
ang - ;z dﬁ[ (244D ) :zﬂ +ag Z:ﬁ ] (2.20-e)

The boundary conditions, the regularity conditions, and the continuity

conditions are, correspondingly,

065 - uP(§) atp=0, -1<é¢s1, (2.21-a)
I -P(&) -l1=<e¢g=<1 n =20
o I - , (2.21-b)
m~ 1 o dAzeandex1 n=0
BRI
I._,1I I 11 tn=0D 2.23-
%en T %én %on = Iqn 2C T ’ ( 2)
ul = uII, vl = Il at n = D, (2.23-b)
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. The transformed equations may be obtained by taking the ™~ .rier

transform of Equations (2.20-a) through (2.20-e) with respe:: to &:

K azuf dvB -
oy b - (is)(s-b . ags2if 2.24-
-} ﬁ df)z (LS)( ﬂ ﬁ) dﬂ ﬂ 0, ( a)
&
4 B ub
) d2v d -
e . (¢ a,.b . a,s2vB _ , 2.24-b
5 a2 (is)(3g-Pp) an 8 0 ( )
f‘.
: B
e Bt [ ey (ya ]
:b aff P, dﬂ (aﬂ Zbﬂ) e (ts)aﬁuﬂ , (2.24-c)
N B _Ba [ b - ]
. - db,| — - Bl, 2.24-d
; %n " T, %Pl Tam - U ( )
B
- ﬁ #2 [ dvi ~ ]
. -—=—d + (a,-2b)uB |; 2.264-
: “mn T B, gl g an T (3770 (2.26-e)
l
&‘ The boundary conditions in the transform space are
[
: S
I - - * A - -
a' 06'7 ufP(s) He IT: P*(§)exp(is&)dé at n 0, (2.25-a)
KN
-~ ;ﬂ£ = -é(s) = - J+m P*(E)exp(isf)dé at n = 0, (2.25-b)
3 -0
; where
1
-
o [-P(&) -ls¢és1
" PO - 12>¢and €21
ﬁi = £ and £ =
)
%: Because the Fourier transform requires the function in the £-
W
= direction to be either exponentially bounded or to vanish at infinity,
.k therefore, the regularity conditions in the transform space at infinity
o
.f become:
P
-
"t
-
A,
,',‘
1’
L
o) L7 P
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(RAT
5 _‘r_‘d;".s ‘." . y

g
Dy

aéé ég II >0 as gn? > o, (2.26)

The boundary conditions become:

PR G § { oI « gll

= D, 2.27-
&n €n’ nn nn at n ( a)
ul = oIl vl = 11 at n = D. (2.27-b)
From Equations (2.24-a) and (2.24-b) we have

i b i a%vP (a,-b) ¢ avP

Uﬂ - - a ?b ( 53 ) d')3 - (aﬂ_ bﬁ) ( Ss ) dﬂ ’ (2.28)
B B g B
asvB a2v8 _

rrrall 2577 + stvP = 0. (2.29)

The general solutfion for Equation (2.29) is

;ﬂ - a; exp(-ns) + b; exp(ns) + c;n exp(-ns) + d;q exp(ns). (2.30)

Substituting Equation (2.30) into (2.28) we have

- 2z 1
u = £[ az exp(-ns) - b; exp(ns) + (—g— - 1)—;—( c; exp(-ns) +
B

+ dz exp(ns) +n(c;n exp(-ns) - d;n exp(ns)]], (2.31)
where pﬁ -~ l-aﬂ/bﬂ. Then, substituting Equation (2.30{ and (2.31) into

(2.24-c) through (2.24-e), we obtain the mechanical stress field solution

for Re{s]>0, as follows:

R, SR TR
‘,5\ﬂu%\¢\f \a

o ) -f\!"'(




. B * . R
Tee P, dﬁs[ Zbﬂ(aﬂ exp(-ns) bﬂ exp(ns)) +
Zaﬂ-bp 1
+ Zbﬂ[ b - a ] s ( c; exp(-ns) + d; exp(qs)] +
B B
* . T
+ 2bﬂ"(cﬂ exp(-ns) dﬂ exp(ns)]], (2.32)
- K2 . * *
asg - P, (Ls)dﬂbﬂ[ - 2(aﬂ exp(-ns) + bﬂ exp(ns)] -
1 1
- 2((—5; ~1)—;— + n]c; exp(-ns) +
1 1 "
+ 2(<—p; - - n]dﬁ exp(ns)]], (2.33)

-ﬁ- #2

aﬂﬂ P, dﬁbﬂs[ -Z(a; exp(-ns) - b; exp(ns)] -

2
3 s(c; exp(-ns) + d; exp(ns)] -
B
- Zn(c; exp(-ns) - d; exp(ns)]. (2.34)

Using the regularity condition (2.26)
* *
bII dII - 0. (2.35)

For Re[s] < 0 we can get a similar set of solutions, where a¥, b¥,

B B

CZ' and d; are function of s and depend upon the pressure distribution

profile P given by

-




O 2sin(s)

o Pm— (2.36)
"\.a

0 8

‘:.!

O

' for a uniform unit pressure in the contact region, -1 < ¢ =< 1.
o
'23
f%? Now enforcing the boundary conditions (2.25) and (2.27), the six
““

v s s * * ok gk %k * :

. coefficients aI, bI' cI, dI' aII’ and cII can be solved from six
%h: algebraic equations. The six algebraic equations may be presented in
g
e
J$‘ matrix form as Equation (2.37), and to be solved in Chapter 3 by Gaussian
S

elimination using the computer subroutine "DECOMP".

ol
¢ 4
¥
;.3 Let 4, = [(2/p,-1)/s+Dje"Ds 3 = E(2/pI-1)/s-D]e'DS
o g g

: ¢, = [(1-1/p,)/s-D]eDS D = [(1-1/p_)/s+D]e"Ds

(%3 ﬂ ﬂ I 1

-‘Y;. = - 'Ds = - )= 'DS
= Eﬁ [(1/(pﬁs)+D]e ?I [(1/(pIs Dle
S8
s,

\.
W0

and

&N . AU, =T (2.37)
. q‘:
(L R

J where
LY ‘l - 7
L0 -1 -1 (-1/pp)/s -(1-1/py)/s 0 0
A
e - - -
e 1 1 l/pIs l/pIs 0 0

- -Ds _gDs .e-Ds -

A = e e JI BI e AII

ti; e-Ds  Ds pe-Ds peDs .e-Ds De-Ds

s

<

-t -e"Ds  .¢Ds {4 ? e-Ds/s52 ¢ /832
¢ I I II

L_e-os eDs £, 7l e-Ds/sy2 &, /637

- ‘ -d‘."-.
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) c? 0
" ‘7‘ - -
NN Uy ax Sy 0
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aé: a ¥ 0
3§\ 11
h c ¥ 0
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i
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i
%Pc 2.3.3 Temperature Field
g
Fﬁ The governing differential equation for the temperature field,
}
i .
il Equation (2.18), is restated here:
s
." "
b 248 248 B
o 07eF | oTeF o 8% g =1, 1I. (2.18)
.,-_:_ 362 6'72 ﬁ aE
R
;.:‘
The boundary conditions, the regularity conditions, and the
f; continuity conditions are
N
oty 568 [ Q) 1sési n =0
J - = Q" (&) = 1 , (2.38)
R dn 0 -l2€éand €21 n =20
[ .
0:}
5:: a¢I a¢II
¥ . - B s n = D, (2.39'3)
Ao an an
o
e sl = 41T, n =D, (2.39-b)
A
o
I
- s, ¢I1 -0, as £24n2 > o (2.40)
4
v
e le
o where B = kII/kI. Equation (2.18) in transform space becomes
%
“d
’
P
v
L 21
L SyKH
7o
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248 i
ol (sz-iRﬁs)¢ﬂ - 0. (2.41)

The solution of Equation (2.50) is

-ﬂ- , -__‘2-_.___ , —2.-—.._.
¢ Agexp( Js Rgs n) + BﬂeXP(/s Rgs ), (2.42)

where Re[/sz-iRﬁs] 20, A,, and B, are function of s and depend

B’ B

upon the heat input profile 6* given by

2sin(s)
Q= — (2.43)

for uniform unit pressure and friction. Using the regularity

condition (2.40)

Bir = 0. (2.44)

Applying the boundary conditions (2.38) and (2.39), the three

coefficients Ay, By and A71 can be readily found:

Q*(F_+BF__)
AL = —3 I 11 : (2.45-a)
Fr(l-exp(-2F D)) + BF Fpp (Ltexp(-2F D))
é*(FI+3FII)eXp(-2FID)
Bl = — : (2.45-b)
F1(1-exp(-2F D)) + 3F Fp; (L+exp(-2F D))
26*exp((F -F )D]
al 1L I , (2.45-¢)

IT "~ F;(l-exp(-ZFID)] + BF F oo (L+exp(-2F D))




: where F_ = /s2-iR

I e .
. I 15 FII Js LRIIS, Re[FII] > 0, and Re .=z 0.
)
Q 2.3.4. Thermal Stress Field
L
.$ From Equations (2.11), (2.13), and (2.14), the equations for the
b,
f thermal component of the solutions are:
0‘ ’
, 2,8 2,8 2 B
" as ? u + (2 ) %v + b@ 82uh - C 3¢ , (2.46-a)
5 AFTE 5% 3€an 8 492 B sz
: i B B B
N 52v d%u 32v 3¢
: b a - C , (2.46-b)
" soe e g e T e
:
: 3 My [ auf vi ﬂ] ) 46
. - — a - y . -
%ce T T, ‘sl qgTae * (3t 4P (2.46-¢)
N
. A Guf
» 3 Ko [ av ] ]
. V- d.b —_ 4+ — , .46-d
: %en T 78, ‘8%l TE T oy (2.46-4)
W
‘ - 4+ + —— . . -
Ton T TR, Yl At TE T 25y - cp? (2.45-¢)
[ The boundarv conditions, the regularity conditions, and the continuity
L}
conditions are
W
3 0:3 -0 atn=0, -l<é&s=<1 (2.47-a)
o
= ol a0 actp=0 -1=<¢<1, (2.47-b)
o nn
l-
o I GIT LI . g 24p2 > @ > 48
, Tii %int g as & ’ )
.
'y a.z - U;I 0 L agll at n = D, (2.49-a)
. n 5n nn nn
.
L]
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ol = oII

, vl = vII at n = D. 2.49-b)
Equation (2.46) in the transformed space become:
by Z:iﬂ - (is)(35-bp) ::ﬂ - agstf L (es)e 98, (2.50-a)
aﬁ_%%;f - (is)(a5-0) jiﬂ L agsrvh L s Ziﬂ (2.50-b)
ocs - ;z dﬂ[ (a-2b, —%—E ORI cﬁ;ﬂ], (2.50-c)
565 - gz dﬂbﬁ[ -g%é - (es)vh), (2.50-d)
'ns - ?2 dﬂ[ aﬂ—ggf + (aﬂ-zbﬂ)&ﬂ - cﬂiﬂ]. (2.50-e)
The boundary conditions, the regularity conditions, and the
continuity conditions are transformed into the expressions (see
comments before equation (2.26))
365 -0 at n =0, (2.51-a)
;n£ -0 at n = 0, (2.51-b)
%é §£ II -0 as 5?2 » o, (2.52)
agg - agg, ;n£ - 535 at g = D, (2.53-a)
ul = oI, vl = 11 at 5 = D. (2.53-b)
24
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e Na 220 Ale ale Al Ao ALa Al

My,
T
W
o
- )
gf From Equations (2.50-a) and (2.50-b) we have
B
"y
y . - ' -
~ b é d3vh a,-2b i dvA
; v ey = ol Eaﬁ- bé; g Y
: 878 " 8" 78 7
. b_c ¢ 32;ﬂ c i
- " Al (o e, (2.54)
N 8°p’ an 8
N
2
¥ d4vB a2vh - 3348 EPY:
! - 2s2 + s¢vP = E - E s? 2.55
: an s d’72 ﬂ ar]3 ,Bs an ( )
o
. where Eﬁ - cﬂ/aﬂ. Equation (2.55) is a fourth order nonhomogeneous ordinary
.‘,
-3 differential equation, where the nonhomogeneous part comes from temperature
‘;: field. The complementary cyB solution of Equation (2.55) is
Qs coB * * * *
) VP - Aﬂ exp(-ns) + Bﬁ exp(ns) + Cﬁn exp(-ns) + Dﬁq exp(ns). (2.56)
0
Y

Py

S

Let the particular solution PvB of Equation (2.55) be given by

I:‘n

L7
3;
. . )
o PvB - ¥ exp(-F_s) + O, exp(F_s). (2.57)
O B B B B
i
‘:{ Substituting Equation (2.57) into (2.55), we obtain:
-
e -F E , F,E .
: V- Fiaz A 0 - 2.7 By (2.58)
S B B
b
N
-.'f‘ .
3 The general solution of Equation (2.55) is obtained by combining the
g complementary and the particular solutions. That is:
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B - A% ) %* * . * B
v Aﬂ exp(-ns) + Bﬂ exp(ns) + Cﬂn exp(-ns) + Dﬂq exp(ns

+ Wﬁ exp(-Fﬂs) + Qﬂ exp(Fﬂs). (2.59)

Substituting Equation (2.59) into (2.54) we have

- 2 1
ud - z[ A; exp(-ns) - B; exp(ns) + (—;; - l)—;—( C; exp(-ns) +

+ DZ exp(ns) +n(CZn exp(-ns) - D;n exp(ns)] -

- Gﬂ exp(-Fﬂs) - Hﬁ exp(Fﬁs)], (2.60)
where
1 F 1 F F A
- B_y3. _B8_ — (B 2 _B_
6, [pﬁ(s>(pﬁ+1)<s>]wﬂ+aﬂ[ﬁ< * ] £,

Equations (2.59) and (2.60) together with(51-¢),(51-d), and

(51-e) yield

B Ha * *
ee P, dﬂs[ Zbﬂ(aﬂ exp(-ns) - bﬂ exp(ns)) +

2a,-b 1
+ Zbﬂ(—gge—zi—]—;*( c; exp(-ns) + d; exp(qs)] +

* ) T
+ ZbBﬂ(Cﬂ exp(-ns) dﬂ exp(ns)] +

+ Kﬁ exp(-Fﬂs) - Lﬂ exp(Fﬁs)J, (2.61)
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- b

ﬁk a&ﬂ - B, (£s)dﬂbﬂ[ - Z(a; exp(-ns) + b; exp(ns)] -
- 2((——- S1)— + n)c; exp(-ns) +

o + 2[(——— -1)— - n)d; exp(ns)] -

\ 3 - Nﬁ eXP(-FﬂS) - Mﬂ exP(FﬂS)], (2.62)

I 5
aﬂﬂ P, dﬂbﬂs[ -Z[a; exp(-ns) - b; exp(ns)] -

sy
‘\' ) N B
-E; P (Cﬂ exp(-ns) + dﬁ exp(qs)] -

S

- 2n(c2 exp(-ns) - dz exp(ns)] +

,}? Q W
" + B exp(-F_s) - B F s)],

exp( (2.63)
bg B g B

where

c
- Eoa,

F
% K, = -a,G, - (aﬁ-Zbﬁ)(—;é—)W '

3 87 %88 8

o)
o
)

.
1)

Pl
A

g

®
¥
A

L] FIorerr: A
T
(@]

SN

[S
7N
1,

...............

----------
----------------

T

»
KA

........




';‘.‘ i C ) yoin 200 aaih mafh Rad bal ok ool yallaall tale 2alih e LAl v Al wal ook~ gy v
Al
i
BN
)
g F c
N 3 '
: W, = -(a,-2b )H, - —Bya, . (—£s.
oy g = “(ag IHy - a (TR, - (B,

L]
.“'l'

Using the regularity condition (2.61)

‘.,

“y %y "‘:J’
L F

e

,.
7.

* *
bII dII 0. (2.64)

-
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v vl

i
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Applying the boundary conditions (2.51) and continuity conditions

b R

K ¥ -
.

e

- . s _ * * * * * *
(2.53), the six coefficients AI’ BI’ CI’ DI’ AII' and CII can be solved

;::‘ from six algebraic equations. They have been represented in matrix
\ \::'
‘}{ form as equation (2.65), to be solved in Chapter 3 by Gaussian
¥ ‘w::‘
] elimination using the computer subroutine "DECOMP".
=

_
'-‘. = - -
'1'-: Au'r 6'r (263)
‘N
‘ol

e

f:: where
b
s
Ry Transport matrix of U = { A¥ B¥ ¢c* p* A * ¥ 3
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Chapter 3

Numerical Solution

3.1 Selection of Branch Cuts

In discussing a correspondence w = A(z) we use the word "function”
to mean that A assigns a single value # to each permissible value of z.
Sometimes this fact is emphasized by saying " A is a single-valued
function". Of course there are equations which do not define single-

valued functions. For example, in the solution of temperature field

(2.51), Fﬁ = J;377§Eg is not a single-valued function in the complex
s-plane. 1Indeed, for each nonzero s, there are two distinct values of
3. Since the concept of analyticity was defined only for single-valued
functions, we can not directly discuss this property for multiple-valued
fucntions such as Fﬁ = /§7T7§E§. We shall, however, investigate the
analyticity of certain single-valued functions which can be derived from
a multiple-valued function w = A(z). We construct these single-valued
functions by focusing our attention on a domain D and selecting a single-
value function which is analytic in D, and then we call it a BRANCH of
~(z) in D.

To define the branch of the double-valued function on Fﬂ = /§377§;§
such that Re[Fg] = 0, we write

. 2 1/2 - JL/2 . 1/2
Fﬂ (s LRﬂs) s (s LRﬁS) , (3.1)

and carefully define, using Figure 3, si/2 - £, exp(éd,), (s-iRﬁ)l/2 -
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'ﬂ' . ¢, exp(éf,), with the values for #, and 6, shown below. On  .an

Vol select the branch cuts along the imaginary axis in the s--_ane, and
o
M the range of §,, #, such that
il
X
¢§ - x/2 <8, < 3n/2 (3.2-a)
D)
)
g and
o -3n/2 26, < n/2 (3.2-b)
1Y
:‘& so
"
R Fg = (2,201 2exp((8,+6,)/2) (3.3)
U
Qﬁ
': Note: 1. For the points along the real axis and along the
Mo
n& imaginary axis between (O,Rﬂ), -n/4 < arg(Fﬁ) < 0.
a
5 X 2. For the points just left to the cut (0,-«), or left to
L
i
3¢ the cut (Rg,»), arg(Fg) = =n/2.
& (Rg, ) g(Fg) /
R 3. For the points just left to the cut (0,-=), or left to
) the cut (Rﬂ,w), arg(Fﬂ) = -n/2.
2
ol
f
>, 3.2 Outline of the Computer Program
)
!
g
0 In simple applications of Fourier transforms, the transform
o
AN parameter s is a real variable and the path of inverse Fourier
:: transform coincides with the real axis. 1In view of the expression in
-,
) Equations (2.42), (2.61), (2.62), and (2.63), there are branch point at

the origin an at s = iRﬂ. There is also a pole at the origin. The
integral is therefore singular. According to the branch cut selection,
) we can have a strip of analyticity as shown in Figure 4. Knowing from

complex analysis [21] that, if the function é(s,n) is analytic in a
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-. p - - - . » - -
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domain D, the integral is independent of the path. Therefor- ‘ithin
this strip of analyticity, we can translate the integral p::.:. parallel

to the real axis over a distance ¢ to avoid the singularities.

All solutions, obtained in Chapter 2, are in the transform space.
Physical solutions are obtained with inverse transforms. In general,
the general solutions, Equations (2.30,31,32,33,34,42,59,60,61,62,63),
are too difficult to invert analytically. Numerical inversion is
possible using the computer subroutines "DECOMP" to perform Gaussian
elimination and "KQUAD" to perform the inverse integration. Both
subroutines "DECOMP" and "KQUAD" are in a IBM-3081D computer. DECOMP
solves a linear system of equations by Gaussian elimination; KQUAD
integrates real functions of one variable over a finite interval, using

an adaptive quadrature scheme based upon Gauss-Kronrod algorithms.

These two subroutines all deal with real functions and variables,
but the present problem involves complex functions of the complex
variable s. Therefore, we do the following work for the computer:

(1) For the program "DECOMP":

Basically, we solve a linear system of equations in matrix form as

nx -0 (3.4)

where A, ¥, and @ are all complex, we can decompose them as

follows
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(a + D)X + ¢y)=(c + id)
- (ax - by) + i(bx + ay) = (¢ + (D) (3.5)

This equation may be written as

Ly St g (3.6)

Equation (3.6) suggests that, instead of inputting a 6x6 complex
number matrix, we input a 12x12 real number matrix.
(1i) For the program "KQUAD"

We integrate functions like:

ic -
gl€,n) = I g(s,n)exp(-isé)ds, (3.7)

-+ ic

wnere g(£,n) 1s a real function, but g(s,n) is a complex function,

Therefore, for a real variable solution, eventually, we do the integration

ic -
g&.m = Re| [ g(s,mexp(-istras), (3.8)

-4 {C

where Re{[ | means "take the real part of the function in the square

brackets", Equation (3.8) can also be rewritten in terms of the real

variable u as

gl&,n) = J+® Re[é(u-tc,n)exp(-z(u~£c)§)]du. (3.9)

-0

The Equation (3.9) indicates that, instead of integrating a complex
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function, we can just take the real part of the integrand and _.inslate
~
ut the integral path by a distance ¢ parallel to the real axis "o avoid the
N

singularity at the origin, and then integrate it by compucter.
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B Parametric Study
Y
o
* s
:ﬁ 4.1 Asperity Parameters and Critical Depth
::!'
. The asperity parameters consist of asperity speed V, pressure P,
¢
~£ and contact area a. The coefficient of Coulomb friction ug relates the
v

normal force and the friction force. The friction force generates both

the mechanical portion and the thermal portion of the stress state.

’-':
~ X . . . .
e Its rubbing speed (V) influences the thermal input. It is readily
’
: b conceivable that, at low rubbing speed, the mechanical portion of the
‘,
oy stress dominates. The static case of V=0 is indeed the limiting case.
o Therefore, at high speed, the thermal stress prevails (see Figure 2).
e
o2
<O Without loss of generality, the distribution of asperity pressure is
o assumed to be UNIFORM, for mathematical simplicity. For the effect of
,.,":-
e non-uniform pressure distribution, see the results of Ju and Huang
“r : . . s
K" f9,10], it was shown that the assumption of uniform distribution of
9%
- asperity pressure will result in stresses 40% less than those from
Y 1% Y P
B
KA
Ih) three-dimensional non-uniform distribution of pressure [10,12,13].
o
RQ’ However, it is adequate to use this assumption in the study of
interaction among various parameters without actually predicting the
N stress level for fracture initiation.
W
2
= We shall designate M.y @S the critical depth where maximum
-
o orincipal thermal tensile stress occurs for single material or for the
.
s coating as a single material, and M max that for the coated medium.

7
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For various parameters and coating thickness, the anal- .
:; principally will locate the depth " nax This depth is dep :‘e¢nt on the
w2 )

material and the coating thickness . From the set {"m~"j’ the worst

case corresponding to one with the highest maximum thermal tensile

stress is important to the designer. Such a worst case is related to

o itci depth
he critical dept Ner

The depth Teyp for a single wear material, where maximum principal
thermal tensile stress occurs is shown in Figure 5. In this figure,
the solid line represents the theoretical M. @ a function of Peclet
number. The analytical computation of this solid line is from the )
solution of thermal stresses for a single material (see Appendix A).
For the numerical result, we select two materials, Stellite III and
Aluminum Oxide, as the test materials. Varying the Peclet number
(R=Va/k) for both is therefore accomplished with varying the asperity
traversing speed. The principal thermal stresses in the trailing edge
of the asperity is calculated for changing depths from the wear
surface. Then the critical depth "cr is obtained where the maximum
principal thermal tensile stress occurs. Hence, we have the

relationship between the Mer and the Peclet number for the two-

imensional case.

The critical depths for three other materials Aluminum (Al),
Silicon Carbon (SiC), and Zirconium (Zr) are computed for the same

asperity speed of 15 ms-l, and the same asperity width of 0.254 mm.

For each of these materials, the material properties are different from

L I T T WY

.
-
.
-

those of the test materials. It is shown in Figure 5, the critical

.
.
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depth ey of each material falls on the theoretical lin- Jhis
illustrates that the critical depth, for a single asp . .:zv excitazion
over a single wear material, depends predominantly -.:on the Peclet
number, R=Va/k. From Figure 5, the relation between the ey and the
Peclet number for the two-dimensional case can be expressed by a simple

equation as:

R(n 12273 _ 204368 %.1)

Figures 6 and 7 show, as functions of depth, the thermal principal
scress (aI) and the temperature gradient for Alumimum and Stellite III,
respectively. From a physical point of view, if the asperity velocity
and contact width are constant, higher Peclet number means the
diffusivity is small. Hence, the speed of the heat transfer into the
medium is slower, and the depth Moy is moderately shallow. On the
other hand, from a mathematical point of view, Equation (A.19) shows
that, for higher Peclet number, the decay rates of the temperature
gracdient are greater. Therefore, the depth to reach the maximum
principal thermal tensile stress will approach the free surface
asymptotically as the Peclet number increases and vice versa. Figure 6

is for Aluminum and Figure 7 is for Stellite III, because the Peclet

-~

number for Stellite III (R

\

1400) is larger than Aluminum (R %= 34) for

a given velocity, consequently, the (nc )

a1 is larger than (nc

Yo
r'st
These two figures not only illustrate that the maximum principal stress

cccurs around the point where the temperature gradient begins to

attenuate, but also imply the results of Figure 5. The principal

.

thermali stress at various depth at the trailing edge of the aspericvy.

<
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for different values of Peclet number, the non-dimensional - _s3s in
Figure 8 incorporates the material properties to yield ma- .. ial
independent values. Therefore, in any given material, :Zor a given
Peclet number, we can obtain the critical depth ey from Figure 5 or
Equation (4.1). The maximum thermal stress corresponding to a given

Peclet number can be obtained for any material from Figure 8.

4.2 Material Parameters

As the emphasis of the paper 1s on the friction force and the rate
of frictional work, the simple linear Coulomb law is used, Fg = ugFg,,
for analytical convenience. The rate of frictional work heats the
surface layer of the wear medium to raise the surface temperature,
which in turn increases the Coulomb coefficient ugf with resulting
further increase in friction force [22]. The present analysis avoids
the iteration by using the maximum Coulomb's coefficient of friction to
anticipate a steady state high temperature field. Equation (8) shown
that the mass density (p) affects the stress field through the Mach
number (M) and the thermal field through the thermal diffusivity (x =
k/pc). Since the Mach number is generally so small for this class of
problems, the effect of the mass density is principally reflected

through the thermal capacity (pc), where ¢ denotes the specific heat.

The mechanical constitutive coefficients and the coefficient of
thermal expansion affect the thermal stress field through the material
compliances and the thermal dilatation. Stiffer material and high

thermal expansion are known to contribute toward higher thermal
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stresses. The effects of the thermal parameters (k,«,pc - - . luc-

a
.
N; tivity, diffusivity and capacity) can be found from Ju ar ' Huang [12]
-
&9 and Ju [13]. These references show that the thermal diZfusivity is
e indeed a derivative thermal parameter. It is the individual value of
2 X . . .
\:; the thermal capacity, the thermal conductivity or their combination
-~
h, that determines the thermal field, and the stress field that leads to
. thermo-mechanical cracking of the wear material.
a
N
W
“
..(“
: Hence, for the mechanical and thermal impedance matching between
-~ the surface layer and the substrate, we will therefore consider the
A
ﬂ? differences in mechanical constitutive coefficient, coefficient of
e
“u
?: thermal expansion, thermal conductivities and thermal diffusivities.
"-_‘.
Ly
sy
uﬁ 4.3 Coating Layer Thickness Effects
3
ii The estimate of thermo-mechanical cracking from high speed asperity
.2§ excitation in the layered medium is more complicated than that of a
-
L single wear material. The latter, as shown by Ju and Huang [9,10,12],
.J
o8 predicts the fracture initiation in hard wear material to be cohesive
"~
x. - I3 3 .
3 failure at the depth 754, where the maximum principal thermal stress
occurs. For layered media, the initiation may occur: (1) inside the
» iy . X -
g surface layer, (2) in the substrate, both through cohesive failure, or
-~
- (3) at the coating/substrate interface through shear delamination. Ju
oy
G and Chen [8] have shown that, for a thick coating layer, with thickness
':J of the order of the asperity size, the critical stress will be inside
.
o the coating at the thermal layer. The present paper thus will address
o> X
£ the stress states in the surface laver as well as in the substrate for
o
7 a
) 44
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various coating thicknesses, taking into consideration the = .:cts of
mechanical and thermal impedance mismatchings. The follo:ing results

are based on Stellite III as test material for both surZace layer and

the substrate.
4.3.1 Effects of Differences in Mechanical Impedance

The effects of both the elastic coefficient and the coefficient
of thermal expansion are mechanical. In the solutions for thermal
stresses, they appear as a group, aE/(l-v), which defines the

mechanical impedance for both the surface layer and the substrate.

Figure 9 illustrates the depths M nax of maximum principal thermal
stresses, as a function of the coating thickness based upon a given
substrate property. In this figure, the substrate material properties
are constants and the mechanical properties of the surface material are

considered as variables. An increase in value of the dimensionless
parameter My, = [aE/(1-v)]1 / [@E/(1- v)]17 = 0.2, 0.5, 2.0 and 5.0
indicate, respectively, two softer surface layers, and two harder
surface layers. If coating thickness less than the depth Mer of the
coating material (for our case, it is assumed My = 0.16), the maximum
thermal principal stress occurs in the substrate. The " nax will
slightly change, depending upon the value aE/(l-v) of the surface
layer. 1If HM for the surface is larger than IIM for thesubstrate, then
the surface layer is harder than the substrate. Therefore the

displacement gradient in the surface layer will become larger than the

substrate. From Equation (2.3), indicates that if the displacement
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gradient of a surface layer for a layered medium is larger - .o for a
single material, then the temperature term is not affecte . by a change
in mechanical properties, and therefore the position where the maximum
principal thermal stress occurs will be shallower than for a single
material . Conversely, it will be deeper than for single material. For
coating thickness larger than ey because we didn’t change the Peclet
number for surface layer, the " max will be the same as treating the
surface as a single material. Consequently, the layered medium is
similar to the single. This implies that, whether a layered medium is
like a single material or not, it depends upon the Peclet number of
material. When the Peclet number is large, the Ter is small, and then

only a very thin coating can be treated as single material.

In Figure 10 and Figure 11, the surface material is fixed. Figure
10 illustrates the maximum principal thermal stress in the surface
.layer, a%, as a function of the coating thickness. The values of the
dimensionless parameter IIy = 0.5, 1.0 and 2.0 indicate, respectively, a
harder substrate, same material and a softer substrate. For coating
thickness less than the depth Mep' the maximum thermal stress in the
coating layer occurs in the neighborhood of the coating/substrate
interface. With increase of the ccating thickness, greater than the
depth Mg the maximum thermal stress is in the neighborhood of the
depth fpax with diminishing effect of the substrate. It is noticed
that, after a value of chr' the result is no different from that of a
single material. Figure 9 shows the corresponding maximum principal
thermal stresses in the substrate, ol , as a function of the coating

II

thickness. Since " max for thin coating is inside the substrate, the
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maximum thermal stress will occur therein. The maximum sub: ‘ite
stress for coating thicker than the depth er will be at

coating/substrate interface. The prediction of fracture initiation

must depend on the cohesive strength of individual materials of the

coating and the substrate.
4.3.2 Effects of Differences in Thermal Properties

Figure 12 shows the depths of maximum principal thermal stresses,
Mpax® 25 2@ function of the coating thickness based upon a given
substrate material property, with conductivity ratio, My = ky/kyy, as
the parameter. The values of Iy = 0.2, 0.5, 2.0 and 5.0 indicate,
respectively, two more insulating surface layers up to two more
conductive surface layers. In this figure, we do not vary the
substrate material properties. When the coating thickness is less than
Mg the value of " max will slightly change, due to the conditions of
the surface layer. For the more conductive surface layer, because more
heat can be dumped into the substrate, the M max will be deeper.
Converserly, M nax will be shallower when we have a more insulating
surface. Because the Peclet number is not changed, when the coating

thickness is larger than Moy the M nax will be equal to Moy
Figure 13 shows the maximum principal thermal stresses in the
surface layer, a%,_as function of the coating thickness, with the
conductivity ratio, My = ky/kyy, as the parameter. Similar to the
case of mechanical mismatch, the maximum stresses in thick coatings

are at the depth Mer and approach that of the single wear material.
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¢ when the substrate is less conductive, IIy = 10.0C, the therm szress
is higher in the surface layer, especially on the coating :ubstrate I

~ 0.5; more heat is readily transferred to the substrats. The thermal

o stress is correspondingly reduced. The maximum principal thermal
}3 stresses in the substrate has a similar trend, as shown in Figure l4.
L]
e
&H Figure 15 (substrate material properties are constant) illustrates
-
:ﬂ that when we change the surface material’'s Peclet member, the M max will
1 2
(3
be changed significantly. Nevertheless, there is a general rule to
g
:¢ help us to determine where nmax is. We have used the rule for the
) * -
Ny : . A .
‘4& previous two cases. That is, when the coating thickness is less than
o
f?‘ the n for the surface layer as a single material, the 7 for
he cr max
)
¥y layered media will be determined by the substrate material properties,
A
N
- but we shall consider the effects of surface layer. At this moment,
l' hh.
when Hpc < 1, it means the surface temperature gradient is larger than
> -q
.- the substrate. Therefore, from Equation (2.3), the " max is slightly
Tl
K Q larger than Moy which is defined by the coating material. Converserly,
J the n is smaller than n__. When the coating thickness is larger than
“ max cr
’: Mer for the surface as a single material, the M nax will be determined
b ="
:,: by the surface material properties. Similarly, Figure 16 shows that,
o
W
when the surface material properties are constant, then M max has the
A
')
Y same tendency.
Vo /
’\
"-
f'-
. Figure 17 illustrates a combined curve for maximum principal
-~ thermal stresses, indicating that the maximum stress for thin coating
N
", is inside the substrate, but it is in the surface layer for thick
Pl
T coatings. In both cases. the stresses are evaluated at the depth M as
h (SN
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4.3.3 Shearing Stress at the Coating/Substrate Interface

Because of the asymmetrical distribution of the temperature
gradient, the direction of the maximum temperature gradient is as
anticipated, not perpendicular to the wear surface. The resulting
value of shearing stress at the coating/substrate interface is not to
be ignored. In Figure 18, the curve for ) = 1.0 can be considered as
the shearing stress at different depths from the wear surface for a
single wear material. The worst case shows the maximum shearing stress
at almost 30% of the maximum principal stress. The value is
significant in designing the coating/substrate bonding strength to
avoid shear delamination. The difference in thermal conductivities of
the coating and the substrate is shown to affect the interface shearing
stress for thin coating layers, If the coating/substrate bonding of a
thin coating is a primary consideration, the substrate may purposely,

by design, be less conductive.
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) Chapter 5
!
Conclusions
5
v
[y S
I‘,‘-:.
:y The paper demostrates the significant effects of the Peclet
'
‘
Lt g
number and the material mismatch between the surface layer and the
| 4yt substrate in high speed asperity excitation. Principally it is the
‘e
o~ critical depth .. at which the thermal tensile stress reaches a
(..
maximum. Peclet number is proven to dominate the determination of the
NN s c : : P :
. critical depth, which is obtained from maximizing the thermal tensile
-
':f. stress in the vicinity of the asperity trailing edge. In other words,
S
{» the asperity velocity, the asperity size, and the material diffusivity
B . . : f s
N are the principal three factors that dominate the critical depth. a
2
o simplified depth n.p as Equation (4.1) can be approximated. From this
LN
“»
»
result, the maximum tensile stress in its alternate non-dimensional
o
n:' Zorm can be obtained for all wear materials. Since the numerical
.:i‘ empirical equation, Equation (4.1), has been demonstrated not to
) depend on the other material properties nor the magnitude of asperity
e
#j excitation, the coefficient and the exponent are therefore constants
a0
Ny .
e in the two-dimensional model. It is, however, expected that the
¢
3 .
- coefficient and the exponent in Equation (4.1) would be function of
Ji* the aspect ratio of the asperity contact area. The work is under
LN .‘,
2 investigation with a three dimensional formulation.
L
A
N The critical depth n is important in the layered media analvsis.
9 cr p
>
ﬂ: It was shown by Ju and Chen [8] that the layer thickness is in the
*

neighborhood of Mg the thermo-mechanical stress state is most damaging.
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On the other hand, the highest stress occurs when the .zing

thickness is in the neighborhood of the Ter regardless c. the
differences in mechanical or thermal properties. As the coating
thickness increases to more than the critical depth ncr for the coating
as asingle material, there is little effect of the substrate on the
maximum thermal stress in the coating layer. Hence, if a thick coating
is permissible and if the asperity size can be statistically
ascertained, a properly chosen coating layer large than ey for coating
material can be estimated to insure the improvement on wear resistance
for materials such as composites. TFor thermal stress analysis of a
layered media, in order to study the impedance matching of the surface
laver and the substrate, it is adequate to consider the thermal
conductivity (k), and the thermal capacity (pc), while the effects of

their differences are negligible for thick coatings; the effects on

thin surface coating are important. Basically, substrates of low
mechanical properties, higher thermal conductivity and capacity will
result in lower stresses in both surface layer and the substrate. The
initiation of the cracks will occur wherever the stress level surpasses
the cohesive strength of the respective material. The critical
locations in the surface layer or in the substrate depend on the

coating thickness relative to the Moy

The shearing stress at the surface layer/substrate interface is
by no means trivial, depending again on the surface coating thickness.
The interface shear reaches a maximum when the coating thickness is
in the neighborhood of "max This knowledge is important for the design

of bonding of the surface coating. Any shear crack, resulting from the

6l

e e i e e e e NN e e SR IR

. e ee e e N . ) p A, W RS
L T T e e e e e e T e e T TR T L A e L e e ot ._-ﬂ- e
e R e A R b e i b N e e e B e A A 5 Ko i M Mo e S A Ml .-g‘.g_g*&gﬂ




*y e 8
. [}
PRSI

O

-~
Vo f'. l.‘ u'. ",l

shear delamination at the interface could cause further ext .ion at

repeated asperity excitations,
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Appendix A

The Equations and Solutions

for Single Material

In this Appendix we present the solutions for the zeroth order

Approximation.

(I) Mechanical Stress Field:

) 3%u 2.1 a?v 5%u . A
N 652 + (N2-1) 853 + 8”2 = 0, .
§2v . 6%u 32%v (A
sez N -D7egs gz = O '
£ [ N2 ou N2+2 ov ] A
. = + + , .
af; P, - 3¢ ( ) on (
[ ]
T , A.
Pen Py d¢ an (
R R Ry A
“an T By L U sz TV, (A

The boundary conditions, the regularity conditions are:

o = u P(£) at n = 0 -l =& <1, (A.
nn
[-P(H)  -l=sd=1 n =20
o4 - l (A.
nmn 0 -l2¢and €21 n =20
Oppor o » @ » 0 as £2492 > o, (A
> >N nn
f3
N -f.r,
1, f~{~f0f'z '_"qf ,g; IS ’;i“ NN ._ u AL -y o
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2)

3)

4)

5)

6)

7)
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, at = D,
3/ £n nn nn 7

u=u vV o=y at n = D.

The solutions are
Vo a*exp(-ns) + c*qexp(-ns).

- 2 1
u = é[ a*exp(-ns) + (_E_ -l)—;— c*exp(-ns) + c*nexp(-ns)},

2N2.1 1
- R s[ 2a*ex (-ns) + 2(“———————]——— c¥ex (-ns) +
P, Xpi-n 1 - N2 ) 5 xp(-n

~
z
>

vy

Np——

K , * 1 L *
afn - P, (ts)[ -2a”exp(-ns) - 2((—5— -l)—g— + q]c exp(—ns)],

- a s[ -2a%ex (-ns) - —E~(c*ex (-ns) - 2c¥nex (- s)]
nn P, Xpi-n s Xxp(-n nexp(-n '

ere

q=1 - N2,

) PP,
a = —Ep [l -Lpf}'

iy PP 1 1
. £ *
% - A e N
¢ 2su +a(l q ) s '
. 2sinfs)

P =

< for uniform unit pressure

in the contact region -1 < ¢ < 1.

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)




(I1) Temperature Field

The governing equation are:

2 32 3
0%¢ |, %% _ % (a.16)
3¢? an? 3¢
The boundarv conditions, the regularity conditions are:
d¢ [ ) -l=g=1 n=20
- —— = Q%) - \ . (a.17)
an 0 -l2fand £ 21 n =20
$ = 0, as £%4n? > o, (A.13)
The solution is:
6 = A exp(-Js?-iRs n), (A.19)

where
' Ak
A = Q°/F, ]
F = /s?-(Rs, Re F] = 0,
- 2sin(sh
Q= for uniform unit pressure for -1 < 7 < 1.

(II11) Thermal Stress Field

The governing equatlions are:
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3 3v bZy
+ N2 ¢] (A.24)
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g The boundary conditions, and the regularity conditions are:
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The solutions are:

.".. LA

v - A¥ exp(-ns) + C¥p exp(-ns) + H exp(-Fn), (A.28)

e

2 1
- t[ A¥ exp(-ns) + ( -1y—
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